EXAM ADVANCED LOGIC

April 3rd, 2018

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Please leave open 10 lines on the first page to give us room for writing down the points.
- Your exam grade is computed as min(10, (the sum of all your points + 10) divided by 10). For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get min(10, (90+10)/10) = 10.

Good luck!

1. Induction (10 pt) We define a new binary connective \uparrow . The truth definition of \uparrow is given by: for all valuations v, $v(A \uparrow B) = 0$ iff v(A) = v(B) = 1 and $v(A \uparrow B) = 1$ otherwise. So for all well-formed formulas A, B of the language of propositional logic, $A \uparrow B$ is logically equivalent to $\neg(A \land B)$.

Now let \mathscr{L}_{\uparrow} be an alternative language of propositional logic based on the operator \uparrow only (so without \neg , \land , \lor , \rightarrow and \leftrightarrow).

- (a) Give an inductive definition of the well-formed formulas of \mathscr{L}_{\uparrow} .
- (b) Show by induction that $\{\uparrow\}$ is functionally complete, i.e. that every well-formed formula P of propositional logic is logically equivalent to a formula P' in \mathscr{L}_{\uparrow} . Prove this in two steps:
 - i. Define P' by induction on well-formed formulas of propositional logic.
 - ii. Prove by induction that for every formula P of propositional logic, P' is logically equivalent to P. Here, you may assume that it has already been proved that for every well-formed propositional formula P, the formula P' is in \mathcal{L}_{\uparrow} .
- 2. Three-valued logics (10 pt) Using a truth table, determine whether the following inference holds in RM₃:

$$\models_{RM_3} (p \supset q) \lor (q \supset p)$$

Write out the full truth table and do not forget to draw a conclusion.

3. Tableaux for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in \mathbf{K}_3 . If the inference is invalid, provide a counter-model.

$$\neg q \lor p \vdash_{K_3} (\neg p \lor q) \lor (p \land \neg q)$$

NB: Do not forget to draw a conclusion from the tableau.

4. Fuzzy logic (10 pt) Determine whether the following holds in the fuzzy logic with set of designated values $D_{0.6} = \{x : x \ge 0.6\}$. If so, explain why. If not, provide a counter-model and show why it is one.

$$(p \land q) \rightarrow r \models_{0.6} (p \rightarrow r) \rightarrow (q \rightarrow r)$$

5. Basic modal tableau (10 pt) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

 $\Diamond \Box \Diamond p \vdash_K \Diamond \Box p.$

NB: Do not forget to draw a conclusion from the tableau.

6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in $K_{\delta\tau}^t$ (dense, transitive). If the inference is invalid, provide a counter-model.

$$\langle F \rangle [P] q \vdash_{K_{s-}^t} \langle F \rangle q \land [P] [P] q$$

NB: Do not forget to draw a conclusion from the tableau.

7. Soundness and completeness (10pt) Consider the following tableau in K_{σ} , which contains only one branch which we call b:

$$\begin{array}{c} (\diamondsuit p \supset \diamondsuit p), 0 \\ \diamondsuit p, 0 \\ \neg \diamondsuit p, 0 \\ \Box \neg p, 0 \\ 0r1 \\ \diamondsuit p, 1 \\ 1r2 \\ p, 2 \\ \neg p, 1 \\ 1r0 \\ 2r1 \end{array}$$

- (a) Is b a *complete* branch? Briefly explain your answer.
- (b) Branch b is open. Provide an interpretation \mathcal{I} and a function f such that f shows that \mathcal{I} is faithful to b. Explain your answer.
- 8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in VK. If the inference is invalid, provide a countermodel.

$$\Box \forall x P x \land \Diamond \exists x Q x \vdash_{VK} \Diamond \exists x (P x \land Q x)$$

NB: Do not forget to draw a conclusion from the tableau.

9. Default logic (10 pt) The following translation key is given:

- L(x) x likes linear algebra
- T(x) x likes tableaux
- M(x) x studies mathematics
- A(x) x studies AI
- d Dilshad

Consider the following set of default rules:

$$D = \left\{ \delta_1 = \frac{L(x) : M(x)}{M(x)}, \qquad \delta_2 = \frac{L(x) \land A(x) : T(x)}{T(x)}, \qquad \delta_3 = \frac{M(x) \lor T(x) : \neg A(x) \lor \neg M(x)}{\neg A(x)} \right\}$$

and initial set of facts:

$$W=\{A(d),L(d)\}.$$

This exercise is about the default theory T = (W, D); so you only need to apply the defaults to the relevant constant d.

- (a) Of each of the following sequences, state whether it is a *process*; and if so, whether or not the process is *closed*, and whether or not it is *successful*. Briefly explain your answers.
 - i. (δ_2) ii. (δ_2, δ_1)
 - iii. (δ_2, δ_3)
- (b) Draw the process tree of the default theory (W, D).
- (c) What are the extensions of (W, D)?

10. Bonus (10 pt)

Consider the language of FDE, containing the connectives \neg, \lor, \land (and not containing \supset). Does the following statement hold for all wffs A, B in that language?

"If $A \vdash_{K_3} B$ and $A \vdash_{LP} B$, then $A \vdash_{FDE} B$ "

If yes, please explain exactly why the statement holds for all wffs A, B in the language of FDE.

If no, please provide a pair of wffs A, B and show in detail why that pair forms a counterexample to the statement.