Exam Advanced Logic

April 3rd, 2018

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Please leave open 10 lines on the first page to give us room for writing down the points.
- Your exam grade is computed as $\min (10$, (the sum of all your points +10$)$ divided by 10). For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get $\min (10$, $(90+10) / 10)=10$.

Good luck!

1. Induction ($\mathbf{1 0} \mathbf{~ p t}$) We define a new binary connective \uparrow. The truth definition of \uparrow is given by: for all valuations $v, v(A \uparrow B)=0$ iff $v(A)=v(B)=1$ and $v(A \uparrow B)=1$ otherwise. So for all well-formed formulas A, B of the language of propositional $\operatorname{logic}, A \uparrow B$ is logically equivalent to $\neg(A \wedge B)$.
Now let \mathscr{L}_{\uparrow} be an alternative language of propositional logic based on the operator \uparrow only (so without $\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow).
(a) Give an inductive definition of the well-formed formulas of \mathscr{L}_{\uparrow}.
(b) Show by induction that $\{\uparrow\}$ is functionally complete, i.e. that every well-formed formula P of propositional logic is logically equivalent to a formula P^{\prime} in \mathscr{L}_{\uparrow}. Prove this in two steps:
i. Define P^{\prime} by induction on well-formed formulas of propositional logic.
ii. Prove by induction that for every formula P of propositional logic, P^{\prime} is logically equivalent to P. Here, you may assume that it has already been proved that for every well-formed propositional formula P, the formula P^{\prime} is in \mathscr{L}_{\uparrow}.
2. Three-valued logics (10 pt) Using a truth table, determine whether the following inference holds in $\mathbf{R M}_{3}$:

$$
\models_{R M_{3}}(p \supset q) \vee(q \supset p)
$$

Write out the full truth table and do not forget to draw a conclusion.
3. Tableaux for FDE and related many-valued logics (10 pt) By constructing a suitable tableau, determine whether the following inference is valid in \mathbf{K}_{3}. If the inference is invalid, provide a counter-model.

$$
\neg q \vee p \vdash_{K_{3}}(\neg p \vee q) \vee(p \wedge \neg q)
$$

NB: Do not forget to draw a conclusion from the tableau.
4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t}$) Determine whether the following holds in the fuzzy logic with set of designated values $D_{0.6}=\{x: x \geq 0.6\}$. If so, explain why. If not, provide a counter-model and show why it is one.

$$
(p \wedge q) \rightarrow r \models_{0.6}(p \rightarrow r) \rightarrow(q \rightarrow r)
$$

5. Basic modal tableau ($\mathbf{1 0} \mathbf{~ p t) ~ B y ~ c o n s t r u c t i n g ~ a ~ s u i t a b l e ~ t a b l e a u , ~ d e t e r m i n e ~ w h e t h e r ~ t h e ~}$ following is valid in K. If the inference is invalid, provide a counter-model.

$$
\diamond \square \diamond p \vdash_{K} \diamond \square p
$$

NB: Do not forget to draw a conclusion from the tableau.
6. Normal modal tableau (10 pt) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in $K_{\delta \tau}^{t}$ (dense, transitive). If the inference is invalid, provide a counter-model.

$$
\langle F\rangle[P] q \vdash_{K_{\delta \tau}^{t}}\langle F\rangle q \wedge[P][P] q
$$

NB: Do not forget to draw a conclusion from the tableau.
7. Soundness and completeness (10pt) Consider the following tableau in K_{σ}, which contains only one branch which we call b :
$\neg(\diamond \diamond p \supset \diamond p), 0$
(a) Is b a complete branch? Briefly explain your answer.
(b) Branch b is open. Provide an interpretation \mathcal{I} and a function f such that f shows that \mathcal{I} is faithful to b. Explain your answer.
8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in $V K$. If the inference is invalid, provide a countermodel.

$$
\square \forall x P x \wedge \diamond \exists x Q x \vdash_{V K} \diamond \exists x(P x \wedge Q x)
$$

NB: Do not forget to draw a conclusion from the tableau.
9. Default logic ($\mathbf{1 0} \mathbf{~ p t}$) The following translation key is given:
$L(x) \quad x$ likes linear algebra
$T(x) \quad x$ likes tableaux
$M(x) \quad x$ studies mathematics
$A(x) \quad x$ studies AI
d Dilshad
Consider the following set of default rules:
$D=\left\{\delta_{1}=\frac{L(x): M(x)}{M(x)}, \quad \delta_{2}=\frac{L(x) \wedge A(x): T(x)}{T(x)}, \quad \delta_{3}=\frac{M(x) \vee T(x): \neg A(x) \vee \neg M(x)}{\neg A(x)}\right\}$,
and initial set of facts:

$$
W=\{A(d), L(d)\}
$$

This exercise is about the default theory $T=(W, D)$; so you only need to apply the defaults to the relevant constant d.
(a) Of each of the following sequences, state whether it is a process; and if so, whether or not the process is closed, and whether or not it is successful. Briefly explain your answers.
i. $\left(\delta_{2}\right)$
ii. $\left(\delta_{2}, \delta_{1}\right)$
iii. $\left(\delta_{2}, \delta_{3}\right)$
(b) Draw the process tree of the default theory (W, D).
(c) What are the extensions of (W, D) ?
10. Bonus ($\mathbf{1 0} \mathbf{~ p t}$)

Consider the language of FDE, containing the connectives \neg, \vee, \wedge (and not containing \supset). Does the following statement hold for all wffs A, B in that language?
"If $A \vdash_{K_{3}} B$ and $A \vdash_{L P} B$, then $A \vdash_{F D E} B$ "

If yes, please explain exactly why the statement holds for all wffs A, B in the language of FDE.
If no, please provide a pair of wffs A, B and show in detail why that pair forms a counterexample to the statement.

